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Abstract- In this paper, we investigate the
asymptotic behavior of the solution of a nonlinear
viscoelastic plate equation with infinite memory.
The nonlinearity in this problem is of a logarith-
mic type. We use a minimal condition on a re-
laxation function h ∈ L1(0,∞); that is

h′(t) ≤ −ξ(t)H(h(t)),

where ξ is a nonincreasing function and H is an in-
creasing and convex function near the origin. We
establish an explicit energy decay formula under
this very general assumption on the behavior of
the relaxation function at infinity. Our results
substantially improve some earlier results in the
literature.

Keywords- Asymptotic behavior, Convex
functions, Infinite memory, Logarithmic Sobolev
inequalities, Plate equation.

I. Introduction

Viscoelastic plate equations have been studied by
many authors and several stability results have been es-
tablished. For example, Dafermos [1] considered the fol-
lowing abstract problem with infinite memory

utt +Au−
∫ +∞

0

h(s)Au(t− s)ds = 0, t > 0, (1)

where A is a strictly positive self-adjoint linear operator
and he proved that the energy tends asymptotically to
zero, but no decay rate was given. Appleby et al. [2]
studied the linear integro-differential equation

utt +Au(t) +

∫ t

−∞
h(t− s)Au(s)ds = 0, t > 0, (2)

and established an exponential decay result for strong
solutions in a Hilbert space. Pata [3] discussed the decay

properties of the semigroup generated by the following
equation:

utt+αAu(t)+βut(t)−
∫ +∞

0

h(s)Au(t−s)ds = 0, t > 0,

(3)
where α > 0, β ≥ 0 and the memory kernel h is a decreas-
ing function satisfying specific conditions. Subsequently,
they established necessary as well as the sufficient condi-
tions for the exponential stability. In [4], Guesmia con-
sidered

utt +Au−
∫ +∞

0

h(s)Au(t− s)ds = 0, t > 0, (4)

and introduced a new approach for proving a more gen-
eral decay result based on the properties of convex func-
tions and the use of the generalized Young inequality. He
used a larger class of infinite history relaxation functions
satisfies the following condition∫ +∞

0

h(s)

H−1(−h′(s))
ds+ sup

s∈R+

h(s)

H−1(−h′(s))
< +∞, (5)

such that

H(0) = H ′(0) = 0 and lim
t→+∞

H ′(t) = +∞, (6)

where H : R+ → R+ is an increasing strictly convex
function. Al-Mahdi and Al-Gharabli [5] considered the
following

utt −∆u+

∫ +∞

0

h(s)∆u(t− s)ds+ |ut|m−2
ut = 0, in D,

(7)
where D = Ω × (0,+∞). They established decay re-
sults with using a relaxation function h, satisfying the
following condiation

h′(t) ≤ −ξ(t)hp(t), t ≥ 0, 1 ≤ p < 3

2
. (8)
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Mustafa [6] consider the following coupled quasilinear
system|ut|

ρ utt −∆u−∆utt +

∫ t

0
g1(s)∆u(t− s)ds+ f1(u, v) = 0

|vt|ρ vtt −∆v −∆vtt +

∫ ∞
0

g2(s)∆v(t− s)ds+ f2(u, v) = 0

(9)
and established more general decay rate results where the
relaxation functions satisfy g′i(t) ≤ −H(gi(t)), i = 1, 2.
He provided more general decay rates for which the usual
exponential and polynomial rates are only special cases.
Recently, Al-Mahdi [7] consider the following viscoelastic
plate problem with a velocity-dependent material density
and a logarithmic nonlinearity:

|ut|ρutt+∆2u+∆2utt−
∫ +∞

0

g(s)∆2u(t−s)ds = ku ln |u|, ,

(10)
in D, where D = Ω× (0,∞) and Ω is a bounded domain
of R2, with a smooth boundary ∂Ω. He established an
explicit and general decay rate results with imposing a
minimal condition on the relaxation function, that is,

g′(t) ≤ −ξ(t)H(g(t)), (11)

where the two functions ξ and H satisfy some condi-
tions. Very recently, Al-Mahdi [8] considered the follow-
ing plate problem:

utt − σ∆utt + ∆2u−
∫ +∞

0

g(s)∆2u(t− s)ds = 0,

and proved that the stability of this problem holds for
which the relaxation function g satisfies the same condi-
tion (11). For a numerical study of a viscoelastic flow be-
tween porous moving walls, we refer to see [9]. For more
result in this direction, we refer the reader to see [10–20].

A. Problems with Logarithmic Nonlinearity and
their Applications

The logarithmic nonlinearity has many applications
in physics such as nuclear physics, optics and geophysics
[21–26]. For the problems with logarithmic nonlinear-
ity, we start with the works of Birula and Mycielski [21]
and [27] where they proved that the wave equations with
the logarithmic nonlinearity have stable and localized so-
lutions. Cazenave and Haraux [28] looked into the fol-
lowing Cauchy problem

utt −∆u = u ln |u|α, (12)

in R3. They established the existence and uniqueness of
the solution. The corresponding one-dimensional prob-
lem of (12) is studied by Gorka [22] where he estab-
lish the global existence of weak solutions provided that
(u0, u1) ∈ H1

0 × L2. In [23], Bartkowski and Gorka in-
vestigated the weak solutions and also proved existence
results of the classical solutions. Hiramatsu et al. [24]
considered the following problem

utt −∆u+ u+ ut + |u|2u = u ln |u|, (13)

and they investigated the numerical solutions of this
problem without theoretical analysis. Recently, Al-
Gharabli et al. [25] considered the following

utt + ∆2u+ u−
∫ t

0

h(t− s)∆2u(s)ds = αu ln |u|, (14)

in Ω× (0,∞) and proved the existence and decay results
of the solutions with imposing the following condition on
the relaxation function

h′(t) ≤ −ξ(t)hp(t), 1 ≤ p < 3

2
, (15)

where α in (14) is a positive constant satisfies α < α0

and √
2π`

α0cp
= e−

3
2−

1
α0 , (16)

where cp is a positive constant satisfies the poincare in-
equality. In [26], Al-Gharabli et al. considered the fol-
lowing problem

|ut|ρutt+∆2u+∆2utt−
∫ t

0

h(t−s)∆2u(s)ds = αu ln |u|,

in Ω × (0,∞) and as in [25] the authors proved the ex-
istence and decay results of the solutions with impos-
ing the same two conditions (15) and (16). Very re-
cently, Al-Gharabli [29] considered the same problem
(14)with finite memory and established a general de-
cay result for which the relaxation function h satisfies
h′(t) ≤ −ξ(t)H(h(t)). For more results of some prob-
lems with logarithmic nonlinearity, we refer to the recent
works in [30–34].

B. Our Problem and Motivations
Motivated by these importance and applications of

the problems with logarithmic nonlinearity and the the
lake of decay results of such those problems with using
a wider class of the relaxation functions, we consider
the following viscoelastic plate problem with log-
arithmic nonlinearity:
utt + ∆2u+ u−

∫ +∞
0

h(s)∆2u(t− s)ds = αu ln |u|, in D,

u = ∂u
∂ν = 0, in ∂Ω× (0,∞),

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω,

(17)
where D = Ω× (0,∞) and Ω ⊆ R2 is a bounded domain
with a smooth boundary ∂Ω. The vector ν is the unit
outer normal to ∂Ω and the constant α is a small positive
real number measures the force of the nonlinear inter-
action and the nonlinear effects in quantum mechanics.
The function h is the kernel and satisfies some conditions
to be specified later.
In the present paper, we investigate the stability of
the solution of our problem. In fact, we extend some ear-
lier works for wave equations to the plate equation with
logarithmic nonlinearity. We also extended some general
decay results, known for the case of finite history, to the
case of infinite history where the relaxation function sat-
isfies a wider class of relaxation functions. Moreover, we
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drop the boundedness assumptions on the history data
considered in many earlier results in the literature.
Our Methodology: We obtained our results by using
the multiplier method with some logarithmic inequalities
and some properties of integro-differential equations and
inequalities. Our decay result is based on ξ, H and α.
Existing and Alternative Approaches: The existing
approaches in the literature to prove the stability of our
problem (17) exist in [25] and [26], however, the relax-
ation function h is especial case of our relaxation function
defined in (19). Moreover, the same relaxation function
used in the present paper is used in [7] and [8], however,
that approach is completely different. The decay rate
obtained in [7] and [8] is better than the decay rate ob-
tained in the present paper but the current approach is
much better and easier than the one in [7] and [8].
This paper is organized as follows. In section (II.), we
present some notations, assumptions and the local and
global existence result of our problem. In section (III.),
we establish some lemmas needed in the proof of our re-
sult. The stability results with an example are presented
in section (IV.). Some conclusions and future works are
mentioned in Section (V.).

II. Preliminaries

In this section, we present some notations and mate-
rial needed in the proof of our results. We use the stan-
dard Lebesgue space L2(Ω) and Sobolev space H2

0 (Ω)
with their usual scalar products and norms. Through-
out this paper, c is used to denote a generic positive
constant and we consider the following hypotheses:

(A1) h : R+ → R+ is a C1- nonincreasing function satis-
fying, for some β0 > 0,

−β0h(s) ≤ h′(s), h(t) > 0, 1−
∫ +∞

0

h(s)ds := ` > 0,

(18)

(A2) There exists a function H : (0,∞) → (0,∞) in
C1(R+) ∩ C2(R∗+) which is increasing and strictly
convex, with H(0) = H ′(0) = 0, lims→+∞H ′(s) =

+∞, s 7→ sH ′(s) and s 7→ s (H ′)
−1

(s) are convex
on (0, r] and there exists a nonincreasing function
ξ : R+ → R+, such that

h′(t) ≤ −ξ(t)H(h(t)), ∀ t ≥ 0. (19)

(A3) The constant α in (17) is such that

0 < α < α0 =
2π`e3

cp
, (20)

where cp is the smallest positive number satisfying

‖∇u‖22 ≤ cp‖∆u‖22, ∀u ∈ H2
0 (Ω),

where ‖.‖2 = ‖.‖L2(Ω).

Remark 1 Assumption (A3) is needed for establishing
the local existence of the solutions of the problem (17).
For more details we refer to see [25].

Remark 2 If H is a strictly increasing and strictly con-
vex C2 function on (0, r], with H(0) = H ′(0) = 0, then
it has an extension H, which is strictly increasing and
strictly convex C2 function on (0,+∞). For instance, if
H(r) = a,H ′(r) = b,H ′′(r) = C, we can define H, for
t > r, by

H(t) =
C

2
t2 + (b− Cr)t+

(
a+

C

2
r2 − br

)
. (21)

For simplicity, in the rest of this paper, we use H instead
of H

Remark 3 Since H is strictly convex on (0, r] and
H(0) = 0, then

H(θt) ≤ θH(t), 0 ≤ θ ≤ 1 and t ∈ (0, r]. (22)

Remark 4 The function g(s) =
√

2π`
cps
− e−

3
2−

1
s is a

continuous and decreasing function on (0,∞), with

lim
s→0+

g(s) =∞ and lim
s→∞

g(s) = −e− 3
2 .

Then, there exists a unique α0 > 0 such that g(α0) = 0.
Moreover,

e−
3
2−

1
s <

√
2π`

cps
, ∀s ∈ (0, α0), (23)

which implies that the selection of α in (A3) is possible.

The modified energy functional associated with problem
(17) is given by

E(t) =
1

2

(
‖ut‖22 + `‖∆u‖22 +

α+ 2

2
‖u‖22

)
− 1

2

∫
Ω

u2 ln |u|αdx+
1

2
(ho∆u)(t),

(24)

where

(ho∆u)(t) =

∫ +∞

0

h(s)‖∆u(t)−∆u(t− s)‖22ds.

Direct differentiation of (24) with using (17), leads to

E′(t) =
1

2
(h′o∆u)(t) ≤ 0. (25)

Lemma 1 [35,36] (Logarithmic Sobolev inequality) Let
u be any function in H1

0 (Ω) and a be any positive real
number. Then∫

Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22+

a2

2π
‖∇u‖22−(1+ln a)‖u‖22.

(26)

Corollary 1 Let u be any function in H2
0 (Ω) and a be

any positive real number. Then∫
Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22+

cpa
2

2π
‖∆u‖22−(1+ln a)‖u‖22.

(27)
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Now, we state without proofs the following existence re-
sult of the solution of our problem (17).

Theorem 1 Let (u0, u1) ∈ H2
0 (Ω)×L2(Ω). Assume that

(A1)− (A3) and the following selection of a

e−
3
2−

1
α < a <

√
2π`

αcp
(28)

hold. Then problem (17) has a weak solution

u ∈ C([0, T ], H2
0 (Ω))∩C1([0, T ], L2(Ω))∩C2([0, T ], H−2(Ω)).

(29)

For the global existence, we introduce the following func-
tionals:

J(t) =
1

2

(
`‖∆u‖22 + ‖u‖22 + (ho∆u)(t)−

∫
Ω

u2 ln |u|αdx
)

+
α

4
‖u‖22

(30)
and

I(t) = `‖∆u‖22 + ‖u‖22 + (ho∆u)(t)− 3

∫
Ω

u2 ln |u|αdx.

(31)
From (30) and (31), one can easily see that

J(t) =
1

3

[
`‖∆u‖22 + ‖u‖22 + (ho∆u)(t)

]
+
α

4
‖u‖22 +

1

6
I(t).

(32)
Therefor, we have the following important lemma

Lemma 2 Assume that (A1) − (A3). Let (u0, u1) ∈
H2

0 (Ω)× L2(Ω) such that

I(0) > 0 and
√

54kc3∗

(
E(0)

`

) 1
2

< `. (33)

Then

I(t) > 0, ∀t ∈ [0, T ). (34)

The proofs of the above existence results can be es-
tablished by following the same arguments in [25] with
adapting the finite memory to infinite memory.

III. Technical lemmas

In this section, we start by establishing several lem-
mas needed for the proof of our main result.

Lemma 3 There exists a positive constant M1 such that

∫ ∞
t

h(s) (4u(t)−4u(t− s))2
dsdx ≤M1h1(t), (35)

where h1(t) :=
∫ +∞

0
h(t+ s)

(
1 + ||4u0(s)||2

)
ds.

Proof The proof is based on the same arguments in [8].
In fact, we have∫ +∞

t

h(s)||4u(t)−4u(t− s)||2ds

≤ 2||4u(t)||2
∫ +∞

t

h(s)ds+ 2

∫ +∞

t

h(s)||4u(t− s)||2ds

≤ 2 sup
s≥0
||4u(s)||2

∫ +∞

0
h(t+ s)ds+ 2

∫ +∞

0
g(t+ s)||4u(−s)||2ds

≤
(

4

`
E(s)

)∫ ∞
0

h(t+ s)ds+ 2

∫ ∞
0

h(t+ s)||4u0(s)||2ds

≤
(

4

`
E(0)

)∫ +∞

0
h(t+ s)ds+ 2

∫ +∞

0
h(t+ s)||4u0(s)||2ds

≤M1

∫ +∞

0

h(t+ s)
(
1 + ||4u0(s)||2

)
ds,

(36)

where M1 = max

{
2, 4E(0)

`

}
.

Lemma 4 Assume that h satisfies (A1). Then, for u ∈
H2

0 (Ω),∫
Ω

(∫ +∞

0

h(s)(∆u(t)−∆u(t− s))ds
)2

dx ≤ c(h ◦∆u)(t),∫
Ω

(∫ +∞

0

h′(s)(∆u(t)−∆u(t− s))ds
)2

dx ≤ −c(h′ ◦∆u)(t).

Proof Using Cauchy-Schwarz inequality, we get∫
Ω

(∫ +∞

0

h(s)(∆u(t)−∆u(t− s))ds
)2

dx

≤
∫

Ω

(∫ +∞

0

√
h(s)

√
h(s)(∆u(t)−∆u(t− s))ds

)2

dx

≤ c
∫

Ω

∫ +∞

0

h(s) (∆u(t)−∆u(t− s))ds)2
dx ≤ c(h ◦∆u)(t).

Similarly, we can establish the second estimate in this
lemma.

Lemma 5 Assume that (A1)− (A3) and (33) are hold.
Then the functionals

ψ(t) =

∫
Ω

uutdx,

χ(t) = −
∫

Ω

ut

∫ t

0

h(t− s)(u(t)− u(s))dsdx

satisfy, along the solutions of (17), for any ε0 ∈ (0, 1)
and δ > 0, the following estimates

ψ′(t) ≤ ||ut||22 −
`

2
||∆u||22 − ||u||

2
2 +

∫
Ω

u2 ln |u|αdx

+ c(ho∆u)(t).
(37)

χ′(t) ≤ δ||∆u||22 +
c

δ
(ho∆u)(t) +

c

δ
(−h′o∆u)(t)

+ (δ − (1− `))‖ut‖22 + cε0,δ(ho∆u)
1

1+ε0 (t).
(38)
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Proof Direct differentiations, using (17), we get

ψ′1 = ||ut||22 − ||∆u||
2
2 − ||u||

2
2 +

∫
Ω

∆u

∫ ∞
0

h(s)∆u(t− s)dsdx

+

∫
Ω

u2 ln |u|αdx.

(39)
We now use Lemma 4 and Young’s inequality, to obtain,
for any µ > 0,∫

Ω

∆u(t)

(∫ ∞
0

h(s)∆u(t− s)ds
)
dx

≤
(

1− `+
µ

2

)
||∆u||22 +

1

2µ
(1− `)(ho∆u)(t).

(40)

By choosing µ = ` and combining (39) and (40), we
obtain (37). To prove (38), direct differentiations, using
(17), gives

ψ′2(t) =

∫
Ω

∆u

∫ ∞
0

h(s)(∆u(t)−∆u(t− s))dsdx

+

∫
Ω

u

∫ ∞
0

h(s)(u(t)− u(t− s))dsdx

+

∫
Ω

∫ ∞
0

h(s)(∆u(t)−∆u(t− s))ds
∫ ∞

0

h(s)∆u(s)dsdx

−
∫

Ω

u ln |u|α
∫ ∞

0

h(s)(u(t)− u(t− s))dsdx

−
∫

Ω

ut

∫ ∞
0

h′(s)(u(t)− u(t− s))dsdx

−
(∫ ∞

0

h(s)ds

)∫
Ω

u2
tdx.

(41)
Similarly to (39), we estimate the right-hand side terms
of (41). So, by using Young’s inequality, the first term
gives, for any δ > 0,∫

Ω

∆u

∫ ∞
0

h(s)(∆u(t)−∆u(t− s))dsdx

≤ δ

4
||∆u||22 +

c

δ
(ho∆u)(t).

(42)

Using Lemma 4, Young’s and Poincaré’s inequalities, the
second and fifth terms lead to∫

Ω

u

∫ ∞
0

h(s)(u(t)− u(t− s))dsdx

≤ δ

4
||∆u||22 +

c

δ
(ho∆u)(t)

(43)

and

−
∫

Ω

u∞

∫ t

0

h′(s)(u(t)− u(t− s))dsdx

≤ δ||ut||22 −
c

δ
(h′o∆u)(t).

(44)

Similarly, the third term can be estimated as follows∫
Ω

∫ ∞
0

h(s)(∆u(t)−∆u(t− s))ds
∫ ∞

0

h(s)∆u(t− s)dsdx

≤ δ

4
||∆u||22 + c

(
1 +

1

δ

)
(ho∆u)(t).

(45)

Let ε0 ∈ (0, 1), so the following inequality holds:

s| ln s| ≤ s2 + dε0s
1−ε0 , ∀s > 0. (46)

Applying (46) to u ln |u|, using Cauchy-Schwarz’ inequal-
ity, the embedding of H2

0 (Ω) in L∞(Ω) and performing
the same calculations as before, we get, for any δ1 > 0,∫

Ω

u ln |u|α
∫ ∞

0

h(s)(u(t)− u(t− s))dsdx

≤ cδ1||∆u||22 +
c

δ1

∫
Ω

∣∣∣∣∫ ∞
0

h(s)(u(t)− u(t− s))ds
∣∣∣∣2 dx

+ cε0,δ1

∫
Ω

∣∣∣∣∫ ∞
0

h(s)(u(t)− u(t− s))ds
∣∣∣∣ 2
1+ε0

dx,

then, putting δ
4 = cδ1 and using Holder’s inequality and

Lemma 4, we find∫
Ω

u ln |u|α
∫ ∞

0

h(s)(u(t)− u(t− s))dsdx

≤ δ

4
||∆u||22 +

c

δ
(ho∆u)(t) + cε0,δ(ho∆u)

1
1+ε0 (t).

(47)

The above inequalities imply (38).

Lemma 6 Assume that (A1)− (A3) and (33) hold and
let ε0 ∈ (0, 1). Assume that

0 < E(0) <
e`π

4cp
. (48)

Then, for α small enough, there exist positive constants
ε and N such that the functional

L := E(t) + ε1ψ(t) + ε2χ(t),

satisfies
L ∼ E (49)

and, for any t ≥ 0, there exists a positive constant m
such that

L′(t) ≤ −mE(t)+c(h◦∆u)(t)+cε0(h◦∆u)
1

1+ε0 (t). (50)

Proof For the proof of (49), we see that, using similar
calculations as before,

|L(t)− E(t)| = |ε1ψ(t) + ε2χ(t)|

≤ c (ε1 + ε2)
(
||ut||22 + ||∆u||22 + (ho∆u)(t)

)
,

therefore, from (34) and (32), we obtain

|L(t)−E(t)| ≤ c (ε1 + ε2)

(
1

2
||ut||22 + J(t)

)
= c (ε1 + ε2)E(t),

then

(1− c (ε1 + ε2))E(t) ≤ L(t) ≤ (1 + c (ε1 + ε2))E(t).

Hence, for ε1, ε2 > 0 satisfying

1− c (ε1 + ε2) > 0, (51)
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the equivalence (49) holds. To prove (50), we let∫ +∞
0

h(s)ds =: h0 and use (25), (37), (38) and the defi-
nition of E(t), therefor for any t ≥ 0 and m > 0 we have

L′(t) ≤ −mE(t)−
(
ε2(h0 − δ)− ε1 −

m

2

)
‖ut‖22

−
(
`

2
ε1 − ε2δ −

m

2

)
‖∆u‖22 −

(
ε1 −

(α+ 2)m

4

)
‖u‖22

+
(
αε1 − α

m

2

)∫
Ω
u2 ln |u|dx+

(
cε1 + ε2

c

δ
+
m

2

)
(ho∆u)(t)

+

(
1

2
− cε2

δ

)
(h′o∆u)(t) + ε2cε0,δ(ho∆u)

1
1+ε0 (t).

(52)
Using the Logarithmic Sobolev inequality, for 0 < m <
2ε1, we get

L′(t) ≤ −mE(t)−
(
ε2(h0 − δ)− ε1 −

m

2

)
‖ut‖22

−
(
`

2
ε1 − ε2δ −

m

2
− α

(
ε1 −

m

2

) cpa2

2π

)
‖∆u‖22

−
(
ε1 −

m(α+ 2)

4
+ α

(
ε1 −

m

2

)
(1 + ln a)

)
‖u‖22 ln ‖u‖22

−
(
α
(m

4
−
ε1

2

))
‖u‖22 +

(
cε1 + ε2

c

δ
+
m

2

)
(ho∆u)(t)

+

(
1

2
− cε2

δ

)
(h′o∆u)(t) + ε2cε0,δ(ho∆u)

1
1+ε0 (t).

(53)
At this point we choose δ so small that

h0 − δ >
1

2
h0 and δ <

`h0

16
.

Whence δ is fixed, the choice of any two positive con-
stants ε1 and ε2 satisfying

h0

4
ε2 < ε1 <

h0

2
ε2 (54)

will make

k1 := ε2(h0 − δ)− ε1 > 0 and k2 :=
`

2
ε1 − ε2δ > 0.

Then, we choose ε1 and ε2 so small so that (51) and (54)
remain valid and, further,

1

2
− cε2

δ
> 0.

Consequently, we get (49) and

L(t) ≤ −mE(t)−
(
k1 −

m

2

)
‖ut‖22

−
(
k2 −

m

2
− α

(
ε1 −

m

2

) cpa2

2π

)
‖∆u‖22

−
(
ε1 −

m(α+ 2)

4
+ α

(
ε1 −

m

2

)
(1 + ln a)

)
‖u‖22 ln ‖u‖22

−
(
α
(m

4
−
ε1

2

))
‖u‖22 + c(ho∆u)(t) + cε0,δ(ho∆u)

1
1+ε0 (t).

(55)
By choosing a satisfying (28) and α so small so that

α1 = k1−
m

2
> 0, α2 = k2−

m

2
−α

(
ε1 −

m

2

) cpa2

2π
> 0

and

α3 = ε1 −
m(α+ 2)

4
+ α

(
ε1 −

m

2

)
(1 + ln a)

+ α
(m

4
− ε1

2

)
ln ‖u‖22 > 0.

Therefore, we arrive at the desired result (50).

Remark 5 Recalling (24), (25), (30) and (34) , we have

E(0) ≥ E(t) = J(t)+
1

ρ+ 2
‖ut‖ρ+2

ρ+2 ≥ J(t) ≥ 1

3
(h◦∆u)(t),

which gives

(h ◦∆u)(t) ≤ 3E(0). (56)

Using (56), we obtain the following

(h ◦∆u)(t) = (h ◦∆u)
ε0

1+ε0 (t)(h ◦∆u)
1

1+ε0 (t)

≤ c(h ◦∆u)
1

1+ε0 (t)
(57)

Lemma 7 If (A1)−(A2) are satisfied, then we have, for
all t > 0, the following estimate∫ t

0

h(s)||∆u(t)−∆(t− s)||22ds ≤
t

q
H−1

(
qµ(t)

tξ(t)

)
(58)

where q small enough, H is defined in Remark (2) and

µ(t) := −
∫ t

0

h′(s)||∆u(t)−∆(t− s)|22ds ≤ −cE′(t),

(59)
.

Proof To establish (58), we introduce the following
functional

λ(t) :=
q

t

∫ t

0

||∆u(t)−∆(t− s)||22ds. (60)

Then, using the fact that E is nonincreasing and (24) to
get

λ(t) ≤ 2q

t

(∫ t

0

||∆u(t)||22 +

∫ t

0

||∆(t− s)||22ds
)
.

≤ 4q

`t

(∫ t

0

(
E(t) + E(t− s)

)
ds

)
≤ 8q

`t

∫ t

0

E(s)ds

≤ 8q

`t

∫ t

0

E(0)ds

< +∞.

(61)

Thus, q can be chosen so small so that, for all t > 0,

λ(t) < 1. (62)

Without loss of the generality, for all t > 0, we assume
that µ(t) > 0, otherwise we get an exponential decay from

6
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(50). The use of Jensen’s inequality and using (59), (3)
and (62) gives

µ(t) =
1

qλ(t)

∫ t

0

λ(t)(−h′(s))
∫

Ω

q|∆u(t)−∆(t− s)|2dxds

≥ 1

qλ(t)

∫ t

0

λ(t)ξ(s)H(h(s))

∫
Ω

q|∆u(t)−∆(t− s)|2dxds

≥ ξ(t)

qλ(t)

∫ t

0

H(λ(t)h(s))

∫
Ω

q|∆u(t)−∆(t− s)|2dxds

≥ tξ(t)

q
H

(
q

t

∫ t

0

h(s)

∫
Ω

|∆u(t)−∆(t− s)|2dxds
)

=
tξ(t)

q
H

(
q

t

∫ t

0

h(s)

∫
Ω

|∆u(t)−∆u(t− s)|2dxds
)
,

(63)
hence (58) is established.

IV. Energy decay

In this section, we state and prove our main general
decay result. Our decay result is in the following theo-
rem.

Theorem 2 Let (u0, u1) ∈ H2
0 (Ω)×L2(Ω). Assume that

(A1) − (A3) and (33) hold. Then, there exist positive
constants C1, C2 such that the solution of (17) satisfies,
for all t ≥ t1,

E(t) ≤ C1

γ(t)
Φ−1

2

(
C2γ(t)∫ t
t1
ξ(s)ds

)
. (64)

where the functions γ(s),Φ2(s) are functions will be de-
fined in the proof.

Proof Combining (50), (57) and (58), then for any t ≥
t0, we get

L′(t) ≤ −mE(t) + c

(
t

q

) 1
1+ε0

(
H−1

(
qµ(t)

tξ(t)

)) 1
1+ε0

(t).

(65)
Combining the strictly increasing property of H and the
fact 1

t < 1 whenever t > 1, we obtain

H−1

(
qµ(t)

tξ(t)

)
≤ H−1

(
qµ(t)

(t)
1

1+ε0 ξ(t)

)
, (66)

and, then, (65) becomes, for t1 = max{t0, 1} and for any
t ≥ t1,

L′(t) ≤ −mE(t) + cε0
(t)

1
1+ε0

q

(
H−1

(
qµ(t)

(t)
1

1+ε0 ξ(t)

)) 1
1+ε0

.

(67)
For simplicity, we let γ(t) =: q(

t
) 1

1+ε0

. Then, (67) be-

comes

L′(t) ≤ −mE(t) +
cε0
γ(t)

(
H−1

(
γ(t)µ(t)

ξ(t)

)) 1
1+ε0

. (68)

Further, letting χ(t) =
(
γ(t)µ(t)
ξ(t)

)
and

Φ−1(χ(t)) =:

(
H−1(χ(t))

) 1
1+ε0

.

Then, (68) reduces to

L′(t) ≤ −mE(t) +
cε0
γ(t)

Φ−1(χ(t)), ∀t ≥ t1. (69)

Now, for ε < r and using the fact that E′ ≤ 0, Φ′ >
0,Φ′′ > 0 on (0, r], we find that the functional L1, defined
by

L1(t) := Φ′
(
ε · γ(t)E(t)

E(0)

)
L(t), ∀t ≥ t1, (70)

satisfies, for some α1, α2 > 0,

α1L1(t) ≤ E(t) ≤ α2L1(t). (71)

Using the fact (γE)′(t) ≤ 0 and Φ′ > 0, therefore, com-
bining (70) with (69), we arrive at

L′1(t) ≤ −mE(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+

cε0
γ(t)

Φ′
(
ε · γ(t)E(t)

E(0)

)
Φ−1(χ(t)).

(72)

Let Φ∗ be the convex conjugate of Φ in the sense of Young
(see [37]), then

Φ∗(s) = s(Φ′)−1(s)− Φ
[
(Φ′)−1(s)

]
, if s ∈ (0,Φ′(r)]

(73)
and Φ∗ satisfies the following generalized Young inequal-
ity

AB ≤ Φ∗(A) + Φ(B), if A ∈ (0,Φ′(r)], B ∈ (0, r].
(74)

Using (73) and the generalized Young inequality (74) on

the last term in (72) with A = Φ′
(
ε · γ(t)E(t)

E(0)

)
and B =

Φ−1(χ(t)), we get

L′1(t) ≤ −mE(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+

cε0
γ(t)

Φ∗
(

Φ′
(
ε · γ(t)E(t)

E(0)

))
+

cε0
γ(t)

χ(t)

≤ −mE(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+ cε0ε

E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)
+

cε0
γ(t)

χ(t).

(75)
Multiplying both sides of (75) by ξ(t) and using the fact

that ξ(t)
γ(t)χ(t) ≤ −cE′(t), we obtain

ξ(t)L′1(t) ≤ −mξ(t)E(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+ cε0εξ(t)

E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)
− cε0E′(t).

(76)

Using the non-increasing property of ξ(t), we obtain, for
all t ≥ t1,

(ξL1 + cε0E)′(t) ≤ −mξ(t)E(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+ cε0εξ(t)

E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)
.

(77)
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Therefore, by setting L2 := ξL1 + cε0E ∼ E, we get

L′2(t) ≤ −mξ(t)E(t)Φ′
(
ε · γ(t)E(t)

E(0)

)
+ cε0εξ(t)

E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)
.

(78)

This gives, for a suitable choice of ε so that k = m −
cε0ε > 0,

L′2(t) ≤ −kξ(t)E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)
, t ≥ t1. (79)

Integrating (79) over (t1, t) gives∫ t

t1

kξ(s)
E(t)

E(0)
Φ′
(
ε · γ(s)E(s)

E(0)

)
≤ −

∫ t

t1

L′2(s)ds ≤ L2(t1).

(80)
Using the facts that Φ′,Φ′′ > 0 and the non-
increasing property of E, we deduce that the map t 7→
E(t)Φ′

(
ε · γ(s)E(s)

E(0)

)
is non-increasing and consequently,

we have for any t ≥ s ≥ t1

k
E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)∫ t

t1

ξ(s)ds

≤
∫ t

t1

kξ(s)
E(t)

E(0)
Φ′
(
ε · γ(s)E(s)

E(0)

)
≤ L2(t1).

(81)

Multiplying each side of (81) by γ(t), we have for k1 > 0,

k
γ(t)E(t)

E(0)
Φ′
(
ε · γ(t)E(t)

E(0)

)∫ t

t0

ξ(s)ds ≤ k1γ(t). (82)

Next, we set Φ2(s) = sΦ′(εs) which is strictly increasing,
and then we obtain for any t ≥ t1 and some constant
k2 > 0,

Φ2

(
ε · γ(t)E(t)

E(0)

)∫ t

t1

ξ(s)ds ≤ k2γ(t). (83)

This gives, for any t ≥ t0 and some constant k3 > 0,

E(t) ≤ k3

γ(t)
Φ−1

2

(
k2γ(t)∫ t
t1
ξ(s)ds

)
. (84)

This finishes the proof.

Example 1 The following example illustrates our re-
sults:
Let h(t) = a

(1+t)q , where q > 1 + ε0 and a is chosen so

that hypothesis (A1) remains valid. Then

h′(t) = −bH(h(t)), with H(s) = s
q+1
q ,

where b is a fixed constant. Since Φ(s) = s
(ε0+1)(q+1)

q .
Then, the estimate (64) gives, ∀t ≥ t1

E(t) ≤ ct
−(q−1−ε0)

(1+ε0)2(q+1) . (85)

V. Conclusions and future works

We succeed to prove the decay results known for the
case of finite history to the case of infinite history where
the relaxation function satisfies a wider class of relax-
ation functions. Note that our decay result (64) gener-
alizes the once of [22], [24], [38], [39], [40], [41] and [25].
For the future works, we plan to find a class of relaxation
functions for which we obtain an optimal decay.
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vol. 2, pp. 21–51, 1980.

[29] M. M. Al-Gharabli, “New general decay results
for a viscoelastic plate equation with a logarithmic
nonlinearity,” Boundary Value Problems, vol. 2019,
no. 1, pp. 1–21, 2019.

[30] X. Han, “Global existence of weak solutions for a
logarithmic wave equation arising from q-ball dy-
namics,” Bulletin of the Korean Mathematical Soci-
ety, vol. 50, no. 1, pp. 275–283, 2013.

[31] W. Lian and R. Xu, “Global well-posedness of non-
linear wave equation with weak and strong damp-
ing terms and logarithmic source term,” Advances
in Nonlinear Analysis, vol. 9, no. 1, pp. 613–632,
2019.

[32] A. Peyravi, “General stability and exponential
growth for a class of semi-linear wave equations
with logarithmic source and memory terms,” Ap-
plied Mathematics & Optimization, pp. 1–17, 2018.

[33] R. Xu, W. Lian, X. Kong, and Y. Yang, “Fourth
order wave equation with nonlinear strain and log-
arithmic nonlinearity,” Applied Numerical Mathe-
matics, vol. 141, pp. 185–205, 2019.

[34] X. Wang, Y. Chen, Y. Yang, J. Li, and R. Xu,
“Kirchhoff-type system with linear weak damping
and logarithmic nonlinearities,” Nonlinear Analysis,
vol. 188, pp. 475–499, 2019.

[35] L. Gross, “Logarithmic sobolev inequalities,” Amer-
ican Journal of Mathematics, vol. 97, no. 4,
pp. 1061–1083, 1975.

[36] H. Chen, P. Luo, and G. Liu, “Global solution and
blow-up of a semilinear heat equation with logarith-
mic nonlinearity,” Journal of Mathematical Analysis
and Applications, vol. 422, no. 1, pp. 84–98, 2015.

[37] V. I. Arnol’d, Mathematical methods of classical me-
chanics, vol. 60. Springer Science & Business Media,
2013.

[38] S. A. Messaoudi and W. Al-Khulaifi, “General and
optimal decay for a quasilinear viscoelastic equa-
tion,” Applied Mathematics Letters, vol. 66, pp. 16–
22, 2017.

[39] M. I. Mustafa, “Optimal decay rates for the vis-
coelastic wave equation,” Mathematical Methods in
the Applied Sciences, vol. 41, no. 1, pp. 192–204,
2018.

[40] M. M. Cavalcanti, V. N. D. Cavalcanti, I. Lasiecka,
and C. M. Webler, “Intrinsic decay rates for the
energy of a nonlinear viscoelastic equation model-
ing the vibrations of thin rods with variable den-

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2020.14.19 Volume 14, 2020 

ISSN: 1998-4448 149



sity,” Advances in Nonlinear Analysis, vol. 6, no. 2,
pp. 121–145, 2017.

[41] M. M. Al-Gharabli, A. Guesmia, and S. A. Mes-
saoudi, “Well-posedness and asymptotic stability re-
sults for a viscoelastic plate equation with a loga-
rithmic nonlinearity,” Applicable Analysis, pp. 1–25,
2018.

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2020.14.19 Volume 14, 2020 

ISSN: 1998-4448 150


	Introduction
	Problems with Logarithmic Nonlinearity and their Applications
	Our Problem and Motivations

	Preliminaries
	Technical lemmas
	Energy decay
	Conclusions and future works



